SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Faculty of Georgaphy
1.3 Department	Department of Physical and Technical Geography
1.4 Field of study	Geography
1.5 Study cycle	Master
1.6 Study programme /	Climate Change and Sustainable Development/ Master degree
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline AI				R QUALITY MANAC	GEMI	ENT	
2.2 Course coordinator				Assistant professor PhD Nicolae AJTAI			
2.3 Seminar coordinator				Assistant professor PhD Nicolae AJTAI			
2.4. Year of	1	2.5 Semester	1	2.6. Type of	С	2.7 Type of	DO
study				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					6
Evaluations				4	
Other activities:				-	
3 7 Total individual study hours		70			•

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers;
activities	

6. Specific competencies acquired

Professional competencies	• Acquiring knowledge on air pollutants, generation, air transport, effect;
	• Acquiring knowledge on mathematical modeling of air pollutant dispersion;
	• Understanding the role of monitoring in air quality management;
	• Acquiring fundamental notions in the selection and application of air pollution control
	technologies;
	• Knowledge, design and application of air quality management strategies

		Autonomy and responsibility.
l les	5	• Communication attitudes and work in interdisciplinary teams.
ransversal	anc	• Ability to interpret, analyze and synthesize data available in the analysis of complex situations
sve	בוב	• Development of an ethical attitude.
ans	2	
LT 102	00	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquisition of basic notions on air quality management Applying the concepts of design and implementation of air quality management plans
7.2 Specific objective of the discipline	 Understanding the processes of generating air pollution Understanding the role of pollutant transport and transformation processes in the atmospheric environment Understanding the effects of air pollutants on the environment and human health Knowledge, design and application of air quality management strategies

8. Content

8.1 Course	Teaching methods	Remarks
1. The main characteristics of the atmosphere. Global	• Interactive exposure	
problems - global climate change, destruction of the	Explanation	
stratospheric ozone layer	Conversation	
2. Sources of pollution, classification, air pollutants	• Interactive exposure	
and their effects	Explanation	
	Conversation	
3. Dispersion of pollutants in the atmosphere.	Interactive exposure	
Meteorological factors and their influence -	• Explanation	
temperature, atmospheric stability, turbulence, wind	Conversation	
4. Processes of transport and transformation of	Interactive exposure	
pollutants in the atmosphere	• Explanation	
	Conversation	
5. Emission inventories, organization principles	Interactive exposure	
	• Explanation	
	Conversation	
6. Monitoring and evaluation of air quality. Transfer	Interactive exposure	
and transformation processes, immissions, effects on	• Explanation	
the environment and human health. The role of monitoring in environmental management	Conversation	
7. Modeling the dispersion of air pollutants	Interactive exposure	
	• Explanation	
	Conversation	
8. Atmospheric emission control technologies-	Interactive exposure	
stationary sources	Explanation	
	Conversation	
9. Emission control technologies - mobile sources	Interactive exposure	
	• Explanation	
	Conversation	
10. Environmental impact assessment, aspects in the	Interactive exposure	
management of atmospheric pollutant emissions.	Explanation	
	Conversation	

Industrial Emissions Directive. The best available	
technologies	
11. Air quality management in Europe-general	• Interactive exposure
policies. Regional air quality management strategies	• Explanation
	Conversation
12. Air quality management in Europe - urban	• Interactive exposure
agglomerations - management strategies, measures	• Explanation
applied, effects	Conversation
13. Air quality management - sectoral approaches -	• Interactive exposure
transport	• Explanation
	Conversation
14. Global air quality management strategies.	Interactive exposure
Scenarios for air quality, past, present and future.	• Explanation
	Conversation
Bibliography	

- 1. CITEAIR, 2007, Air Quality Management Guide book, http://citeair.rec.org/downloads/Products/AirQualityManagement.pdf
- 2. EEA, 2020, Measures to reduce emissions of air pollutants and greenhouse gases: the potential for synergie, <u>https://www.eea.europa.eu/publications/measures-to-reduce-emissions-of</u>
- 3. EMEP/EEA, 2019, Air pollutant emission inventory guidebook 2019, Technical guidance to prepare national emission inventories, <u>https://www.eea.europa.eu/publications/emep-eea-guidebook-2019</u>
- IPCC, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, <u>https://www.ipcc.ch/report/ar5/syr/</u>
- 5. NIVA, 2015, Trends in ecosystem and health responses to long-range transported atmospheric pollutants RAPPORT L.NR. 6946-2015 [Heleen A. de Wit, Jean-Paul Hettelingh, Harry Harmens (eds.)],

https://unece.org/DAM/env/documents/2016/AIR/Publications/Trends_in_ecosystem_and_health_r esponses_to_long-range_transported_atmospheric_pollutants.pdf

SLOCAT, 2018, Transport and Climate Change Global Status Report 2018, <u>http://slocat.net/tcc-gsr</u>
 UNEP, 2000, Urban quality management toolbook,

https://wedocs.unep.org/bitstream/handle/20.500.11822/8728/Urban_quality_management_toolboo	
k.pdf?sequence=3&isAllowed=y	

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Sources of air pollution	Interactive exposure	
	• Explanation	
	Brainstorming	
2. Emission inventories-use of	Interactive exposure	
technical guidance in quantifying	• Explanation	
industrial emission sources	Brainstorming	
3. Emission inventories-use of	• Interactive exposure	
technical guidance in quantifying	• Explanation	
emission sources from transport	Brainstorming	
4. Emission inventories-use of	Interactive exposure	
technical guidance in quantifying	Explanation	
emission sources from agriculture	Brainstorming	
5. The use of mathematical models to	Interactive exposure	
calculate the dispersion of air	Explanation	
pollutants - the model SCREEN	Brainstorming	
View Version 4.0.1		

6. Air quality management strategies -	Interactive exposure
urban agglomerations - case studies.	• Explanation
7. Air quality management strategies-	Lab assignment
transports - case studies	• thematic analysis
8. Air quality related imission measurements – SO2	Lab assignment
	• thematic analysis
9. Air quality related imission	Lab assignment
measurements – NO2	• thematic analysis
10. Air quality related imission	Lab assignment
measurements – VOCs	• thematic analysis
11. Air quality related imission	Lab assignment
measurements – PMs	• thematic analysis
12. Air quality related imission	Lab assignment
measurements - O3	• thematic analysis
13. Air quality indexes calculation –	Lab assignment
EEA and EPA	• thematic analysis
14. Project presentation	• Presentation
	• Q&A

Bibliography

1. EMEP/EEA, 2019, Air pollutant emission inventory guidebook 2019, Technical guidance to prepare national emission inventories, <u>https://www.eea.europa.eu/publications/emep-eea-guidebook-2019</u>

- 2. Lakes Environmental, 2018, SCREEN View Version 4.0.1 Freeware Screening Air Dispersion Model, <u>https://www.weblakes.com/products/screen/index.html</u>
- 3. SLOCAT, 2018, Transport and Climate Change Global Status Report 2018, http://slocat.net/tcc-gsr
- 4. UNEP, 2000, Urban quality management toolbook, <u>https://wedocs.unep.org/bitstream/handle/20.500.11822/8728/Urban_quality_management_toolbook</u> <u>.pdf?sequence=3&isAllowed=y</u>
- 5. EEA, 2022, Air quality index, <u>https://www.eea.europa.eu/themes/air/air-quality-index</u>
- 6. EPA, 2022, Air quality index (AQI) basics, <u>https://www.airnow.gov/aqi/aqi-basics/</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content structure of the discipline was structured by studying the recent monographs in the field and by consulting the programs and the available notes from some recognized institutions in the field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• The correctness and completeness of the accumulated knowledge.	Oral exam	50%
10.5 Seminar/lab activities	Individual Project	Evaluation of the project (documentation and demonstration)	50%

10.6 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the:

- the determinants that influence the quality of air resources;
- air pollution control technologies;
- strategies and measures in the field of air quality management.

The student will prepare and sustain a project / essay according to the content of the framework. Obtaining the minimum mark of 5 is an entry condition for the Exam.

Signature of seminar coordinator Assistant professor PhD Nicolae AJTAI

Date of approval 12.10.2022

Signature of the head of department