SYLLABUS

1.1 Higher education	Babes Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Geography
1.3 Department	Physical and Technical Geography
1.4 Field of study	Geography
1.5 Study cycle	Master
1.6 Study programme /	Climate Change and Sustainable Development
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Management, Treatment and Recovery of the Waste				he Waste			
2.2 Course coor	rdin	ator		Lect. Eng. Cristina Modoi, PhD			
2.3 Seminar coordinator			Lect. Eng. Cristina Modoi, PhD				
2.4. Year of	2	2.5	3	2.6. Type of	Exam	2.7 Type of	Mandatory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					2
Evaluations					4
Other activities:					
3.7 Total individual study hours		50			
3.8 Total hours per semester		126			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	

5

5. Conditions (if necessary)

5.1. for the course	Laptop, video system
5.2. for the seminar /lab	Laptop, video system

activities	
------------	--

6. Specific competencies acquired

-	
es al	Municipal waste management concepts
ons nci	General principles of the waste management
eter	Waste recovery and recycling
ofe mp	Energy recovery from the waste
P1 [0]	
	Analyzing, assessing and structuring the processes of collection, transport, treatment,
al ies	recovery, recycling, composting and disposal of waste in order to reduce the environmental
enc	impact.
nsve	
rar	
ΕŬ	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire the theoretical and practical knowledge in the field of waste management; Knowledge about waste collection, transport, treatment, recovery, recycling, and landfills
7.2 Specific objective of the discipline	Analysis of the urban waste management process Reduce the environmental impact of the municipal solid waste The emphasis on the importance of efficient waste management in industry and in other economic branches

8. Content

8.1 Course	Teaching methods	Remarks
General. Definitions. Objectives	Lecture	
Wastes classification	Interactive discussions	
	Observations	
General principles of wastes management	Lecture	
Collection and transportation of the wastes	Interactive discussions	
Health-care wastes management	Observations	
Management of the biodegradable wastes.	Lecture	
Landfill vs recovery & recycling	Interactive discussions	
	Observations	
Aerobic composting and anaerobic digestion of the	Lecture	
biodegradable wastes.	Interactive discussions	
	Observations	
Biodiesel from used oil.	Lecture	
Paper recycling	Interactive discussions	
	Observations	
Other wastes recovery and recycling: plastic, rubber,	Lecture	
leather	Interactive discussions	
	Observations	
Recycling of the construction and demolition wastes	Lecture	
	Interactive discussions	
	Observations	

Waste Electrical and Electronic Equipment	Lecture
	Interactive discussions
	Observations
Hazardous wastes in the municipal solid wastes.	Lecture
Health-care wastes	Interactive discussions
	Observations
Thermal treatments of the wastes: Pyrolisis,	Lecture
Gasification, Incineration.	Interactive discussions
Coincineration in the cement industry.	Observations
Industrial wastes management. Hazardous wastes.	Lecture
	Interactive discussions
	Observations
Bibliografie	

^{1.} Williams, Paul T., 2005, Waste treatment and disposal, 2nd edition, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England, ISBN 0-470-84912-6, 380 p.

- 2. European Environmental Agency Report, 2013, Managing municipal solid waste a review of achievements in 32 European countries
- 3. Larry Bass, T. E. Bilderback, Extension Specialist, M. A. Powell, Composting, a guide to managing organic yard wastes, Published by North Carolina Cooperative Extension Service
- 4. Manderson , G.J., Composting agricultural and industrial wastes, Biotechnology , vol III, Encyclopedia of Life Support Systems
- 5. Environment Canada, 2013, Technical Document on Municipal Solid Waste Organics Processing, ISBN: 978-1-100-21707-9.
- 6. Pichtel, John,2005, Waste management practices : municipal, hazardous, and industrial / John Pichtel, ISBN 0-8493-3525-6, Taylor & Francis Group, 649 p.
- 7. European Directive
- 8. Blasy L., Lange M., Hagen N., Rosar D., Atudorei A., Benefits of using landfill gas resulting from municipal landfill, Salubrity, 2006.
- 9. Lottermoser, B., 2003, Mine wastes: Characterization, Treatment and Environmental Impacts, Springer Verlag Berlin, Heidelberg
- 10. Woodard & Curran, Inc., 2006, Industrial Waste Treatment Handbook Second Edition, Elsevier
- 11. McDougal, F., White, P., Franke, M., Hindle, P., "Integrated solid waste management a life cycle inventory", Blackwell Publishing, 2001
- 12. Shah Kanti S., Basics of Solid and Hazardous Waste Management Technology, Prentice Hall, 2000.
- M. Pavloviü, D. Tadiü, S. Arsovskic, A. Tomoviü, A. Pavloviü, 2016, A New Fuzzy Model for Market Validation of Device Recycling Motor Oils, Procedia Environmental Sciences 35 (2016) 381 – 390
- 14. Y. Zhang, M.A. Dub, D.D. McLean, M. Kates, 2003, Biodiesel production from waste cooking oil:2. Economic assessment and sensitivity analysis, Bioresource Technology 90 (2003) 229–240
- 15. Mukherjee, B. Debnath, Sadhan Kumar Ghosh, 2016, A Review on Technologies of Removal of Dioxins and Furans from Incinerator Flue Gas, Procedia Environmental Sciences 35 (2016) 528 – 540
- 16. Jaber Valizadeh, Ashkan Hafezalkotob, Seyed Mehdi Seyed Alizadeh, Peyman Mozafari, 2021, Hazardous infectious waste collection and government aid distribution during COVID-19: A robust mathematical leader-follower model approach, Sustainable Cities and Society 69 (2021) 102814
- 17. Hossein Shabanali Fami, Lusine H. Aramyan, Siet J. Sijtsema, Amir Alambaigi, 2019, Determinants of household food waste behavior in Tehran city: A structural model, Resources, Conservation & Recycling 143 (2019) 154–166.
- Hao Yu, Xu Sun, Wei Deng Solvang, Gilbert Laporte, Carman Ka Man Lee, 2020, A stochastic network design problem for hazardous waste management, / Journal of Cleaner Production 277 (2020) 123566
- 19. Zahra Vazifeh, Fereshteh Mafakheri, Chunjiang An, 2021, Biomass supply chain coordination for remote communities: A game-theoretic modeling and analysis approach, Sustainable Cities and

Society 69 (2021) 102819.

- 20. Yingqun Ma, Jun Gu, Yu Liu, 2018, Evaluation of anaerobic digestion of food waste and waste activated sludge: Soluble COD versus its chemical composition, / Science of the Total Environment 643 (2018) 21–27.
- 21. Vanessa Abad, Romina Avila, Teresa Vicent, Xavier Font, 2019, Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors, Bioresource Technology 283 (2019) 10
 22. http://einpch.irc.ec.europa.eu/reference/wt html 8 2

222. http://eippeo.jie.ee.eu/opu.eu/reference/ wt.html	0.2	
8.2 Seminar / laboratory	Teaching methods	Remarks
Analysis of waste management process	Group activities	
Analysis of process biodegradable waste management	Group activities	
Study of biodegradation of the organic waste in aerobic environment	Group activities; experiment	
Study of biodegradation of the organic waste in anaerobic environment	Group activities; experiment	
Analysis of process of solid waste management:	Group activities	
plastic waste and textile waste		
Analysis of process of solid waste management: metal	Group activities	
and paper wastes		
Analysis of process of solid waste management:	Group activities	
rubber and glass wastes		
Analysis of industrial waste management processes,	Group activities	
including hazardous wastes		

Bibliography

- 1. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste
- 2. Rives, J., J. Rieradevall, X. Gabarrell, 2010, LCA comparison of container systems in municipal solid waste management, Waste Management 30 (2010) 949–957.
- 3. Pickin, J., 2008, Representations of environmental concerns in cost–benefit analyses of solid waste recycling, Resources, Conservation and Recycling 53 (2008) 79–85.
- 4. Björklund, A., Finnveden, G., 2005, Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies, Resources, Conservation and Recycling 44 (2005) 309–317.
- 5. Paul T.W., Waste Treatment and Disposal, cap. 4 Waste Landfill, Second Edition, Ed. John Wiley & Sons, ISBN: 0-470-84912-6, 2005.
- 6. Rusu T., Bejan M., Deșeul sursă de venit, Editura Mediamira, Cluj-Napoca, ISBN 973-713-119-3, 2006.
- References document of best available techniques (BAT, 2009) of Final Draft BAT Guidance Note on Best Available Techniques for Management of Tailings and Waste-Rock in Mining Activities Draft of References document of best available techniques (BAT) of Waste Treatments Industries, 2015
- 8. Guidance for the Recovery and Disposal of Hazardous and Non-hazardous Waste, IPPC, 2004
- 9. Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste
- 10. US EPA Methodology for Estimating Municipal Solid Waste Recycling Benefits, 2007
- 11. Tchobanoglous G., Kreith F., Handbook of Solid Waste Management, McGraw-Hill, New York, 2002.
- 12. Le Zhang, Kai-Chee Loh, Jingxin Zhang, 2019, Enhanced biogas production from anaerobic digestion of
- 13. solid organic wastes: Current status and prospects, Bioresource Technology Reports 5 (2019) 280-296.
- 14. Magdalena Daria Vaverková, Dana Adamcová, Jan Winkler, Eugeniusz Koda, Lenka Petrželová, Alžbeta Maxianová, 2020, Alternative method of composting on a reclaimed municipal waste landfill

in accordance with the circular economy: Benefits and risks, Science of the Total Environment 723 (2020) 137971.

- 15. Yunmei Wei, Jingyuan Li, Dezhi Shi, Guotao Liu, Youcai Zhao, Takayuki Shimaoka, 2020, Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review, Resources, Conservation and Recycling 122 (2017) 51–65.
- 16. Laura Bravi, Barbara Francioni, Federica Murmura, Elisabetta Savelli, 2021, Factors affecting household food waste among young consumers and actions to prevent it. A comparison among UK, Spain and Italy, Resources, Conservation & Recycling 153 (2020) 104586.
- 17. Raquel Diaz-Ruiz, Montserrat Costa-Font, Jose M. Gil, 2018, Moving ahead from food-related behaviours: an alternative approach to understand household food waste generation, Journal of Cleaner Production 172 (2018) 1140-1151.
- Eliana Mancini, Ioannis Arzoumanidis*, Andrea Raggi, 2019, Evaluation of potential environmental impacts related to two organic waste treatment options in Italy, Journal of Cleaner Production 214 (2019) 927-938.
- 19. Ranjana Rathaur a, Sumit H. Dhawane a, Amit Ganguly b, Mrinal Kanti Mandal a, Gopinath Halder, 2018, Methanogenesis of organic wastes and their blend in batch anaerobic digester: Experimental and kinetic study Process Safety and Environmental Protection 1 1 3 (2018) 413–423.
- 20. Jyothilakshmi R.a, S.V.Prakashb, 2016, International Conference on Solid Waste Management, 5IconSWM 2015 Design, Fabrication and Experimentation of a Small Scale Anaerobic Biodigester for Domestic Biodegradable Solid Waste with Energy Recovery and Sizing Calculations, Procedia Environmental Sciences 35 (2016) 749 – 755.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The studied subjects aim to bring the master students up to date with the topic of waste processing, and the main waste processing technologies applied in the country and abroad.

The master's students will also acquire the ability to carry out consulting activities, skills appreciated by the representative employers in the field related to the program.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade		
			(%)		
10.4 Course	Presence				
	Activity	Written exam and	Exam (Note E) 50%		
		theoretical questions.			
10.5 Seminar/lab activities	Presence				
	Activity	Problem solving	Laboratory 25%		
			Seminar (Note S) 25%		
10.6 Minimum performance standards: N=0,5E+0,25S+0,25P; N>5; S>5; P>5					

10. Evaluation

Date	Signature of course coordinator	Signature of seminar coordinator
April 2022	Lect.dr.ing. Cristina Modoi	Lect.dr.ing. Cristina Modoi