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1. INTRODUCTION 

 

Urban areas are increasingly experiencing the 

adverse effects of the urban heat island (UHI) 

phenomenon, which amplifies the effects of global 

warming and climate change (Gartland, 2012). The 

concept of UHIs, as detailed by Santamouris (2020), 

highlights their emergence as a direct response to urban 

development and the concentration of heat-absorbing 

surfaces in cities. While Atmospheric Urban Heat 

Island (AUHI) is difficult to assess without an in-place 

urban climate monitoring system, remote sensing data 

proved to be very useful in retrieving land surface 

temperature (LST). Surface Urban Heat Island (SUHI) 

Centre for Research on Settlements and Urbanism 
 

Journal of Settlements and Spatial Planning 
 

J o u r n a l  h o m e p a g e: https://jssp.reviste.ubbcluj.ro 

Cities are heating up faster than their rural counterparts due to the urban heat island phenomenon, with severe heat accumulation in 

various areas – hotspots. This study proposes a new approach to analysing urban heat islands by detecting and hierarchising their 

associated hotspots based on their severity derived from the combination of intensity and frequency. The new method, implemented in 

R, uses Landsat thermal band data, study area boundaries, and an imperviousness layer to pinpoint critical areas. It consists of a three-

step process: i. identifying and prioritising hotspots for each usable satellite image; ii. computing the intensity and frequency, and iii. 

calculating severity and generating the maps. Combining reclassified multi-image intensity and persistence data, we derived nine 

classes representing the range from the most frequent and intense areas to the least. Incorporating the imperviousness layer, the 

hotspot extension is dramatically reduced. The resulting hotspot maps provide valuable insights for urban planners and policymakers, 

highlighting the most vulnerable regions within the urban area and signalling the need for targeted administrative interventions. This 

comprehensive analysis was also applied to cold spots, ensuring a thorough understanding of the most and least critical regions.  
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is detected based on LST differences between urban and 

rural areas (Voogt and Oke, 2003). Thus, remote 

sensing technology has brought a new viewpoint to 

understanding UHI in large areas, making regional or 

global studies more efficient and less expensive (Sanyal 

and Lu, 2004; Zhou et al., 2015; Zhou et al., 2022). 

Having the advantages of an extensive detection range 

and comprehensive space information, the SUHI has 

been largely used worldwide to investigate urban 

thermal features and their associated urban heat island 

effects (Cui et al., 2021; Derdouri et al., 2021; Hu and 

Brunsell, 2013; Zhou et al., 2022). 

Based on an extensive literature review 

analysis, Wang and Chang (2020) found that, in 

relevant discussions, the term “hotspots” (HS) 

associated with the UHI (UHI-HSs) is not commonly 

mentioned, and the general perception of this term 

refers to the areas with the highest temperature or heat-

related risks, but there is no consensus on their 

definition, or how their thresholds or indicators should 

be chosen. Many studies defined UHI-HSs as only an 

ambiguous description of high-temperature areas (Ho 

et al., 2016; Ketterer and Matzarakis, 2016; Silva et al., 

2018), whereas others indicated that there is a 

significant threshold for the impact of heat on human 

health, and, once exceeded, the risk of mortality will 

become increasingly sensitive to slight changes in 

temperature (Houghton et al., 2012). However, since 

there are certain limitations in assessing the impact of 

heat on human health and there is not enough evidence 

to support this information, practitioners should find a 

way to establish a reasonable threshold range according 

to different spatial scales and objectives (Wang and 

Chang, 2020). Thus, detecting and analysing UHI-HSs 

is paramount for urban planning, public health, and 

environmental management.  

Various methods have been developed and 

employed to identify UHI-HSs based on LST derived 

from satellite imagery, in-situ measurements or 

exploring thermal clusters through HS analysis tools. 

However, in-depth review research conducted by Wang 

and Chang (2020) indicated that only 2.5% of the 

studies involved persuasive methods to establish 

thresholds precisely and reasonably, and 28.75% of 

them presented a clear set of thresholds or referred to 

the definitions in previous studies, focusing on the 

concept and its meaning. The great majority did not 

provide a definition/method for UHI-HS identification, 

and they were merely considered common sense; 

extreme anomalies were often obscure in the 

temperature maps (37 %) or adopted subjective 

thresholds for easy operation and description (31.25%) 

(Wang and Chang, 2020).  

Most studies considered satellite-based 

estimates of LST as being effective in explaining surface 

UHI (SUHI) effects since they provide relatively fast 

and low-cost information (Deilami et al., 2018). The 

multitude of approaches aiming to identify/detect the 

SUHI-HSs based on LST can be synthesised into the 

following typology: (i) using Jenk’s natural 

discontinuity grading method, the highest area is 

considered an HS (Silva et al., 2018; Yin et al., 2018); 

(ii) classification of LST into a various number of 

classes, and the areas in the highest values are called 

HSs (Zhao et al., 2010; Sing Wong et al., 2016); (iii) 

exceeding a fixed or relative threshold above the urban 

area mean value (Martin et al., 2015; Mathew et al., 

2016; Guha, 2017); (iv) a defined temperature fixed 

threshold to be exceeded combined with other features 

(area extension or distance to green areas) (Echevarria 

Icaza et al., 2017).  

One of the most common tools for HS analysis 

in recent years is spatial autocorrelation clustering, 

which measures how a feature in one area relates to its 

surroundings. The main algorithms used are Getis-Ord 

Gi (a regional tool) (Abera and Yeshitela, 2024; Guerri 

et al., 2021b; Qiao et al., 2023) and Local Moran’s I (a 

global tool) (Krellenberg et al., 2014; Abougendia, 

2023). The Getis-Ord Gi statistic remains the most 

popular and largely used method for SUHI-HS 

detection, despite existing research that has explored 

the possibility of improving it (Bruns and Simko, 2017) 

or finding alternative approaches, such as employing 

LST curvature at various locations to delineate HS 

boundaries using the Multi-Scale Shape Index (Wang et 

al., 2015) or considering the fractal scale index by 

applying a percentile-based islet detection method for 

HS identification, with the top portion of the 3D 

temperature surface cut at a threshold value identified 

as UHI-HS (Shreevastava et al., 2019). 

The present paper’s main aim is to present a 

new method for analysing SUHI and, more specifically, 

to rank and detect SUHI-HSs severity inside the SUHI 

based on their intensity and frequency by using LST 

derived from Landsat imagery. This approach could 

become very useful for practical purposes, especially for 

territorial/urban planners in the process of prioritising 

interventions for reducing the UHI effect, since it is able 

to rank the severity of the HSs in a dedicated area. 

Additionally, it could answer questions such as: Which 

is/are the most critical area(s) in this city that need 

interventions to increase the thermal comfort in the 

city, taking into account the SUHI perspective? How 

extended is it/are they? How can it/they be identified 

considering both frequency and intensity?      

 
2. THEORY AND METHODOLOGY  

 

This section presents general information on 

the newly developed method. In our research, we 

propose and apply a new HS identification method, 

which is more effective compared to the largely used 

GetisOrd-Gi* methodology or with its enhanced version 

(Bruns and Simko, 2017). This innovative method, 

implemented in R, will be useful for urban planning 

decision-makers as it could support prioritising active 
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interventions in specific areas, thus contributing to 

more efficient urban planning and public health 

strategies. To address the limitation imposed by the low 

spatial resolution of satellite thermal imagery 

commonly used (MODIS) (Wang and Chang, 2020), we 

employed images with a considerably improved spatial 

resolution (30 m), collected by Landsat missions and 

freely provided by the United States Geological Survey 

(U.S. Geological Survey [USGS], 2023).  

The novelty of the proposed method consists 

of a few issues, making it more useful and reliable for 

end-users and enhancing its practicality for urban 

planners. Thus, it allows: 

- ranking the SUHI-HSs based on their 

intensity at the entire considered area scale; 

- flexible intensity thresholds (percentile-

based) for SUHI-HSs identification; 

- flexible number of SUHI-HSs identified 

based on their intensity; 

- taking into consideration the inclusion or 

exclusion of imperviousness data for SUHI-HSs 

identification;  

- assessment of the SUHI-HS severity 

accounting for their persistence and overall intensity 

calculated based on multiple images. 

While the user can choose both intensity 

thresholds and the number of HSs to be identified, the 

proposed method allows SUHI-HSs to be delimited and 

uniquely identified. Unlike the classic Getis-Ord Gi* 

method, which indicates statistically significant value 

differences within a study area but does not connect 

adjacent values to form a connected surface, the new 

proposed method achieves this connectivity. Thus, it 

identifies and delimits SUHI-HSs as separate areas, 

starting from the current highest value and expanding 

the search in different directions in the geographical 

space (latitude/longitude). 

This new approach of the territorial 

delimitation of SUHI-HSs applied to multiple satellite 

images of the same area provides the opportunity to 

examine their temporal persistence and intensity, as 

described in section 3.2. The implementation of the new 

method has been adapted for raster layers in R to 

increase accessibility to a broader audience. It considers 

the Landsat thermal band for LST detection and the 

limits of the study area as base input values, whereas 

the use of the imperviousness layer, as derived from the 

Sentinel-2 sensor of the European Space Agency 

(European Environment Agency, 2020), was set as an 

optional parameter. The method has several specific 

configurable parameters, as shown in the general 

framework A first pre-processing step is necessary to 

extract the study region from a larger area based on a 

mask vector layer. The second one consists of deciding 

whether or not the imperviousness will be considered. If 

included in the analysis, the SUHI-HSs identification 

will consider only the built-up/sealed areas, generating 

a higher fragmentation and a decrease in the SUHI-HS 

area. When detecting SUHI-HSs solely in built-up areas, 

the process consists of reclassifying the imperviousness 

raster layer, followed by cropping the imperviousness 

and LST layers to the desired study area and extracting 

the vegetation-covered zones from the LST using the 

reclassified binary imperviousness (Fig. 1). 

 
Fig. 1. SUHI-HS identification framework. 

 

The full analysis method involves three steps:  

(i) SUHI-HSs are identified and ranked for 

each usable satellite image (Croitoru et al., 2024);   

(ii) The algorithm computes the SUHI-HSs 

persistence and the overall intensity, generating 

synthesis maps from all available images;  

(iii) Persistence and overall intensity maps are 

used to derive the SUHI-HSs severity map. 

All detection algorithms are presented in detail 

in the section Results and Discussions. The R code with 

functions used is freely available at: 

https://github.com/zsmagyari/SUHI. Beyond the HSs, 
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the algorithms can be very easily adapted to detect cool 

spots (CSs).   
 
3. RESULTS AND DISCUSSION  
 

This section presents the algorithms for 

obtaining the SUHI-HSs and their associated 

parameters, while also comparing them, where possible, 

to the results obtained by applying the Getis-Ord Gi* 

method, already implemented in ArcGIS and 

consequently largely used.  

 

3.1. SUHI-HSs detection algorithm based on 
single satellite images 
 

The proposed method is a step-by-step 

identifying algorithm based on three parameters: the 

number of SUHI-HSs, which the algorithm has to 

identify, and two threshold values as percentiles 

defining the minimum accepted value for a cell to be 

part of a SUHI-HS and the minimum average value for 

each SUHI-HS: for example, if the combination of the 

95th and the 98th percentile thresholds is chosen, it 

means that each cell belonging to any SUHI-HS to be 

identified has a temperature higher or equal to the 95th 

percentile of the temperature range over the entire area 

of the city considered and the mean temperature of the 

entire SUHI-HS is equal to or higher than the 98th 

percentile. The percentile values are calculated based on 

the LST range for the entire analysis area selected by 

the users (e.g., the city, a neighbourhood etc.). For 

SUHI-HS detection, the algorithm starts by calculating 

the minimum acceptable values for a cell value and for 

an HS mean. With the two thresholds defined, each 

SUHI-HS identification is done step-by-step, starting 

with identifying the highest-temperature cell. Further, 

the algorithm searches all the neighbour cells to check if 

they meet the two threshold conditions. If checked, the 

cell is assigned to the current SUHI-HS and placed in a 

stack for its neighbours to be considered, too. If its 

neighbours do not meet the threshold conditions, they 

are dropped and not placed back in the stack. If the two 

conditions are not met, it will search in a different 

direction.  

This process ensures that the expansion of an 

HS by grabbing appropriate neighbouring cells will 

eventually stop, completing the HS identification. The 

process will continue until no cell characterised by the 

two conditions is found in any direction. After the first 

SUHI-HS identification, the algorithm begins to search 

for the next SUHI-HS, considering all remaining cells 

that have not been assigned to the previously detected 

SUHI-HS(s) and keeping the same criteria/thresholds 

for identification. To identify each SUHI-HS, the stack’s 

top value is extracted, and its neighbours are analysed.  

Each cell assigned to an identified SUHI-HS 

will receive a unique HS identification number. This 

allows the detection order of HSs to be tracked and 

ranked and the already assigned cells to be registered. 

The analysis result is a raster layer where each cell has 

either a null value or an HS ID value. The script for the 

SUHI-HS detection (getHotSpots function) is developed 

in R and is freely available online at 

https://github.com/zsmagyari/SUHI. The results of the 

newly proposed method for SUHI-HS detection were 

compared with those obtained from the Getis-Ord Gi* 

statistics. In terms of the identified SUHI-HS locations, 

results returned by both methods are very similar (Fig. 

2), thus validating the correctness of the algorithm we 

proposed.  

Fig. 2. SUHI-HS detection results using Getis-Ord Gi*: (a) and the newly designed method in Oradea city (the most intense 
10 (b) and 20 (c) SUHI-HSs with the 95th percentile as the minimum value for a cell and the 98th percentile average threshold of the 
entire HS values) derived from the Landsat image collected on 13 August 2023. 

 
However, the newly designed method gives the 

user more flexibility in choosing the intensity and 

expansion of the HSs. Similarly to SUHI-HS detection, 

a SUHI cool spot (SUHI-CS) detection algorithm was 
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developed considering the lower percentile values as 

thresholds: e.g. if the pair of intensity thresholds of the 

5th and the 2nd percentiles is selected, it means that each 

cell belonging to the SUHI-CS has a temperature lower 

or equal to the 5th percentile of the temperature range 

over the entire area of the city considered, and the 

entire SUHI-CS mean temperature is equal to or lower 

than the 2nd percentile of the entire analysis area.  

 
3.2. SUHI-HSs severity detection 
 

In addition to detecting the location and 

ranking of the SUHI-HSs on a single satellite image, the 

proposed method can quantify their severity by classes 

identified based on the combined assessment of their 

persistence and overall intensity derived from a multi-

image analysis.  

 
3.2.1. SUHI-HSs persistence assessment   

 

The persistence of a SUHI-HS is calculated 

based on its frequency of occurrence on all satellite 

images available for a given period. When determining 

the SUHI-HS persistence, the sequence number 

obtained during the identification phase is not 

considered, as all are equally important.  

The probability of a location (cell) being part 

of a SUHI-HS is calculated by summing up the cell 

values (0-not part of a SUHI-HS; 1-part of a SUHI-HS) 

for every location across different satellite images and 

normalising them by the total number of images. Thus, 

the method allows identifying areas where HSs 

consistently form, with persistence values ranging from 

0 to 1, which are reclassified into a selectable number of 

classes. For example, we classified the persistence into 

three classes (1, 2, and 3), with class 1 including 

locations most frequently identified as part of SUHI-

HSs derived from the entire satellite image set.  

The functions for SUHI-HS persistence 

(hotspotPersistence) are freely available at 

https://github.com/zsmagyari/SUHI.  

 
3.2.2. SUHI-HSs overall intensity assessment   
 

The method/algorithm proposed allows the 

user to determine the overall intensity of SUHI-HSs by 

choosing the number of classes. Thus, to identify the 

overall intensity of a location (a cell in a SUHI-HS), it is 

necessary to define the number of SUHI-HSs to be 

considered for analysis and the number of 

intervals/classes into which they will be divided. Based 

on the number of intervals/classes, their boundaries are 

defined, and the algorithm will return the index of the 

interval in which a given location (cell) was most 

frequently found. As an example, we classified the 

Overall intensity into three classes (1, 2, and 3), with 

class 1 including locations most frequently identified as 

having high intensity derived from the entire satellite 

image set. It can be detected based on the hotspot 

Overall Intensity function. Similarly, functions can be 

used to evaluate the persistence and overall intensity of 

the SUHI-CSs by using the proper naming convention 

for input files (available at 

https://github.com/zsmagyari/SUHI). 

 
3.2.3. SUHI-HSs severity assessment   
 

The severity of the SUHI-HSs is detected by 

combining the two parameters detected (persistence 

and overall intensity) using a matrix combining the 

classes resulting from previous calculations. In the case 

study presented, from the persistence and overall 

intensity data, considering three classes for each 

feature, nine classes were derived (Fig. 3) to highlight 

areas representing the range from the most intense and 

highly persistent SUHI-HSs (the most severe SUHI-

HSs) to that characterised by low occurrence and 

intensity (the lowest severe SUHI-HSs).  

A similar analysis was conducted using the 

functions adjusted to detect persistence and overall 

intensity for the SUHI-CSs.  

 
Fig. 3. The severity classes derived from persistence 

and overall intensity for SUHI-HSs (left) and SUHI-CSs 
(right). 

 

Combined data on SUHI-HSs and SUHI-CSs can 

be represented on the same map using GIS, highlighting 

the most critical zones within the study area (SUHI-HSs), 

signalling the need for immediate administrative 

intervention, as well as the most comfortable ones (SUHI-

CSs). Incorporating the imperviousness layer significantly 

increases the fragmentation of SUHI-HSs while reducing 

their size (Fig. 4).  
SUHI-HS intensity, frequency, and severity 

can vary significantly within an urban landscape from 

one period to another, suggesting that more than a one-

size-fits-all approach to urban planning and public 

health interventions may not be practical.  

The proposed method addresses this 

challenge, allowing setting targeted/customized 

strategies to mitigate the adverse effects of each SUHI-

HS. This approach enhances the efficiency of 

interventions and ensures that resources are allocated 

where they are most needed, maximising their impact. 

Compared to the Getis-Ord Gi* method, which is largely 

and the most frequently used for SUHI-HSs detection, 

the method we propose is more complex, allowing 

multi-image processing and providing additional SUHI-

HS features: frequency, overall intensity, and severity.   



Zsolt MAGYARI-SÁSKA, Csaba HORVÁTH, Sorin POP, Adina-Eliza CROITORU 
Journal of Settlements and Spatial Planning, vol. 15, no. 2 (2024) 89-96 

 

 94 

  

Fig. 4. SUHI-HSs and SUHI-CSs severity in Oradea city with various numbers of spots identified considering the impervious 
areas: a) 10 spots; b) 20 spots; c) 50 spots. 

 

4. CONCLUSIONS  

 

This research proposed an innovative SUHI-

HSs detection method to comprehensively analyse the 

SUHI phenomenon, offering new insights into the 

spatial and temporal dynamics of heat distribution in 

urban areas. By employing a new algorithm developed 

in R, it can identify and rank the critical areas in terms 

of their persistence, intensity, and severity where heat 

systematically accumulates, thereby accentuating the 

risks associated with elevated temperatures. The 

method proposed has many advantages: 

- it is easy to operate as the algorithms are 

developed in R, which is largely used by the scientific 

community; 

- it allows the user to flexibly adjust the 

intensity thresholds and the number of spots identified 

according to local characteristics and planning 

purposes; 

- it uses multi-image processing, providing a 

synthetic view, ranking the HSs over a longer period, 

based on their frequency, intensity, and severity, and 

allowing their prioritisation for interventions. 

Beyond the state of the art, with its capability 

for single or multi-image processing to derive synthetic 

results and to rank the SUHI-HSs, the new method we 

propose could become a valuable tool not only for 

scientists in urban studies but also for city planners and 

decision-makers as it provides insights on the most 

critical locations that should be prioritised for urgent 

interventions in urban areas towards achievements of 

the various sustainable development goals (SDGs), such 

as SDG4 – Health and well-being; SDG7 – Affordable 

and clean energy; SDG9 – Industry, innovation and 

infrastructure; SDG11- Sustainable cities and 

communities; SDG13 – Climate action. Thus, the 

method can be used to identify critical areas for various 

types of interventions:   

 - modification of the urban landscape by 

replacing concrete/asphalt areas with new blue/green 

ones to diminish the intensity/severity of the SUHI-HS 

areas and increase the quality of life in the cities (SDG4, 

SDG9 and SDG11);  

 - transforming the SUHI-HSs generated by 

building roofs or parkings into non-SUHI-HS areas by 

covering them with solar panels (SDG7); 

 - identifying the best locations for first aid in 

case of extreme temperature events (e.g., heatwaves), 

which are severely amplified by the existence of the 

UHIs and their associated HSs (SDG4 and SDG13); 

 - identification of the urban tissue types that can 

generate SUHI-HSs, which should not be replicated 

when new build-up areas are designed (SDG9).    

Additionally, the method has the advantage 

that it can be applied, not only in urban climate studies 

but in multiple domains and sectors where spatial data 

are available (e.g., biodiversity). 
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