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1. INTRODUCTION  

 

The relationship between human population 

distribution and land use/cover change is much debated 

[1]. The spatial distribution of human population on the 

land surface is considered as a fundamental determinant 

of land use impacts on natural ecosystems [2]. In 

developing countries, excessive high rural human 

population density is a frequent concern in terms of 

overpopulation and pressure on environmental carrying 

capacity. But when population density gets too low, it also 

has adverse impacts on rural areas [3]. On a large spatial 

scale, human presence is positively related to biodiversity 

suggesting that people contribute to biodiversity 

improvement by species introduction and habitat 

diversification [4]. On a smaller spatial scale, however, 

such as urbanization it alters the land use/cover and 

affects the natural habitat. Densely populated areas are 

characterized by land fragmentation, isolation of habitats 

by roads and pollution, and intensively managed 

agricultural lands [5].  

Remotely-sensed data can both be used to 

evaluate human impact on the biophysical environment 

and environmental impacts on human economic 

activity.  Understanding human population distribution 

and density at different spatial levels and landscapes is 

essential for the formulation of appropriate policies for 

the sustainable use of natural resources in developing 

countries. The distribution of human population is one 

of the key datasets required for improving the 
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Remotely-sensed data can be used to overcome deficiencies in data availability in poorly monitored regions. Reliable estimates of 

human population densities at different spatial levels are often lacking in developing countries. This study explores the applicability of a 

geographically-weighted regression (GWR) model for estimating population densities in rural Africa using land use/cover data that 

have been derived from remote-sensing while accounting for spatial non-stationarity. This study was conducted for the Lake Naivasha 

basin in Kenya where population pressure, intense land utilization in the catchment and informal settlements in Naivasha town due to 

lucrative economic activities are the major challenges of the basin socio-ecological system. The results of this study show that using a 

GWR model for taking into account the spatially-varying relationship between specific land use/cover classes and population 

significantly improves population estimates and handles the spatial non-stationarity that could not be addressed by global ordinary 

least squares (OLS) model. The result revealed that the parameter estimates (coefficients) for grassland and cropland use/cover have a 

significant spatially varying relationship with population and exhibit locally different signs, which would have gone undetected by a 

global model. Consequently, this study indicates that incorporating spatial non-stationarity can significantly improve population 

density estimates for rural Africa based on remotely-sensed data. 
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understanding of human impacts on land and water 

resources [6]. Human population in general and 

population density in particular are often used as proxy 

measures for land use/cover changes and other spatial 

changes. Moreover, investigating the linkage between 

land use/cover and population also helps in examining 

the risk of natural resource degradation. Therefore, in 

this paper an attempt is made to reveal the multifaceted 

relationship between population and land use/cover 

and to estimate population using remotely-sensed data. 

In order to estimate population density a single 

land use variable (residential or the residential pixel) is 

normally employed in an ordinary least squares (OLS) 

regression model to relate population to land use/cover 

data. It is also possible to relate population to a greater 

variety of land use/cover types in the form of a 

multivariate regression model, considering that the 

population may be found in  more than one type of land 

use/cover [7], [8]. However, there is a spatial non-

stationarity issue, which refers to the situation that a 

relationship tends to vary over space [9]. For population 

estimation, spatial non-stationarity cannot be addressed 

using global OLS models. As a result, many researchers 

have attempted to estimate the population by adopting a 

regional (local) regression approach, and a pixel-based 

population estimation approach [7], [10], [11], [12]. 

Currently, there is an increased interest to estimate 

population using a geographically weighted regression 

(GWR) model. The GWR technique has been designed 

specifically to take care of the above mentioned spatial 

non-stationarity problem. GWR easily estimates 

complicated spatial patterns, and is able to capture effects 

at a local spatial level [9], [13], [14]. However, for rural 

Africa the spatial non-stationarity relationship between 

population and land use/cover is rarely investigated. 

Therefore, this study explores the applicability of a 

geographically-weighted regression (GWR) model for 

estimating population densities in rural Africa using land 

use/cover data that have been derived from remote-

sensing while accounting for spatial non-stationarity. 

Moreover, this study explores the spatial patterns of the 

GWR model that would help clarify the relationship 

between population and land use/cover that might not 

have been evident with the global OLS model. This 

approach is tested for the case of the Lake Naivasha basin, 

Kenya. 

 

2. DATA AND METHODS 
 

2.1. Study area  
 

The lake Naivasha basin is located in the 

central southwest part of Kenya, approximately 80 km 

northwest of Nairobi, the nation’s capital (fig. 1).  

It is located in the Kenyan rift valley and is 

found between latitudes 00° 10' to 00º 55' S and 

longitudes 36º 09' and 36º 40' E. It covers an area of 

3400 km2 with a climate that is predominantly semi-

arid [15], [16]. The catchment is home for a diversity of 

flora and fauna, wildlife and bird’s habitat that 

contribute to the area’s attractiveness as a tourist 

destination. Lake Naivasha is registered as an 

international Ramsar site for wise use of the wetlands 

through local and national actions and international 

cooperation to achieve sustainable development in 1995 

[17]. Lake Naivasha is a highly significant freshwater 

resource in an otherwise water deficit area. Apart from 

the invaluable freshwater, it also supports large and 

vitally important economic activities including 

horticulture and geothermal power generation. The 

upper parts of the basin are mainly used for wheat 

production and livestock farming. The area to the west 

and east of the lake are occupied mainly by large-scale 

farms that produce vegetables and pyrethrum and by 

maize growing small-scale agricultural farms [16].  Due 

to land use transformation since Kenya’s independence, 

much of the upper catchment areas of the basin were 

settled by indigenous Kenyans (fig. 1).  

The transformation has continued over the 

years as large farm areas are sold to land-buying 

companies, which later subdivided the land into small 

holdings. In the upper parts of the basin households 

own up to around 4.04 hectares of land [18]. 

Agriculture plays a key role in the Kenya’s economy. 

Coffee, tea and horticulture (i.e. flowers, fruits, and 

vegetables) are the principal exports [19]. The 

horticultural farms have appeared around Lake 

Naivasha in the past 20 years depending heavily on the 

availability of freshwater resources. The area is a major 

contributor to Kenya’s gross domestic product (GDP), 

for employment opportunities and socioeconomic 

development of the country as a whole. The growth of 

large-scale commercial activities in the form of a 

booming flower industry along with the existing small-

scale farms in the Lake Naivasha basin have 

implications for the demand for resources from the 

Lake Naivasha basin ecosystem [15].  

The population pressure, the intensification of 

land use in the catchment and the growth of informal 

settlements in Naivasha town due to lucrative economic 

activities are major challenges of the Lake Naivasha basin 

socio-ecological system. As a consequence, more and 

more people from different parts of the country are 

attracted to the basin, seeking employment 

opportunities. Human settlements in the Lake Naivasha 

basin are concentrated around the main towns, emerging 

in new rural centres and in farm areas. The basin has 

experienced significant population growth over the past 

years and has been estimated at about 568,500 people in 

1999 [20]. In 2009, the basin population has been 

estimated to have increased by approximately 13% 

reaching values of 659,300 people [21]. A total of 62 

sub-locations (the smallest administrative unit) that 

comprise the census population data of the basin are 

located within or partly within the catchment area. 
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Fig. 1. Lake Naivasha basin, Kenya. 

 

2.2. Data sources 

 

2.2.1. Land use/cover data 

 

A land use/cover map was derived using the 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) satellite image1 (15 m spatial 

resolution) acquired on 2 February 2008. A geo-

referenced and ortho-rectified high resolution (20 cm) 

aerial photograph of the study area taken between the 3rd 

and 6th July 2000 by Ramani Geo-systems in the Eastern 

Africa region was used as a ground truth for land 

use/cover classification and for visual evaluation of the 

classification. The aerial photographs covered 300km2 

ground areas around Lake Naivasha. In addition, an 

existing data set from Multipurpose Afri-cover Database 

for the Environmental Resources (MADE) published in 

2002 by the Food and Agricultural Organization (FAO) 

was also used and provided ancillary data to support the 

classification. A sample of 221 ground truth points were 

collected from field survey conducted in September 2010 

and 56 points were acquired from the aerial photo. An 

additional 106 survey points were taken from a sample set 

collected by Were [22] in September 2008 for the same 

                                                 
1 The ASTER satellite image was obtained from the online Data Pool at 
the NASA Land Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and Science (EROS) 
Center, Sioux Falls, South Dakota (http://lpdaac.usgs.gov/get_data). 

area. Thus, a total of 383 sample land use/cover ground 

truth points have been collected and used to classify and 

produce a land use/cover map of the study area for 2009.  

The classification of the ASTER satellite image 

used in this study was implemented using eCognition™ 

object-based image analysis software. Land use/cover in 

the Lake Naivasha basin is highly fragmented. As a 

consequence per-pixel spectral-based methods may not 

effectively solve the high spectral variation problem within 

similar land use/cover types. Therefore, an object-oriented 

classification method was chosen to reduce this problem 

[23]. Object-oriented image classification and analysis is 

not focused on single-pixel values, but on group of pixels. 

Such groups of pixels are called objects. The scale 

parameter was determined using a method proposed by 

Dragut et al. [24]. Objects are created in the course of a 

segmentation process, followed by classification [25]. 

Image objects can be identified on the basis of patches of 

spectrally similar pixels referred to as segments [26].  

Training data was uploaded as a thematic layer in 

order to generate sample object for image classification. 

The standard nearest-neighbour algorithm was used. This 

algorithm automatically generates multi-dimensional 

membership functions based on the sample objects. In this 

process 90% of the data collected from the field survey and 

the aerial photo were used for image classification. The 

remaining 10 % of the data was used to create a Training 
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and Test Area (TTA) mask for assessing the quality of the 

extracted land use/cover map. The overall accuracy of the 

classification was 87%, and the Kappa statistic was 83%, 

indicating a strong agreement or accuracy between 

classified map and the ground reference information [25], 

[27], [28]. The overall accuracy result was acceptable and 

meets a minimum level (85%) of interpretation accuracy 

needed for the identification of land use/cover categories 

from remotely-sensed data as recommended by Anderson 

et al. [29]. The land use/cover map for the Lake Naivasha 

basin was produced with eight key classes: cropland, forest 

cover, grassland, woodland, shrub land, built-up area 

(settlement and urban areas), horticulture (i.e. areas 

identified as greenhouse for flower and horticulture farms) 

and water-body. The land use/cover classification result 

for the whole study area shows that 29.5% of the study 

area is cropland; 22% is grassland; 24% is forest; 9.2% is 

woodland; 10.3% is shrub-land; 0.4% is horticulture; 0.7% 

is built up areas and 3.9% of the study area are covered by 

water-bodies (fig. 2).  

 
 

Fig. 2. Land use/cover map of Lake Naivasha basin, 

2009. 

 

2.2.2. Population census data and map 

 

The 2009 Kenya population and housing 

census data and the census map (paper copy) were 

obtained from the Kenya National Bureau of Statistics 

[21]. The census map was scanned and geo-referenced 

and co-registered to match the projection of the 

produced land use/cover map. The 2009 Kenya census 

population is reported at different administrative units 

or levels: i.e. national, province, district and sub-

location level. The Lake Naivasha basin population 

census comprises data from 62 sub-locations and 

Aberdare forest sub-locations in the South and North 

Nyandarua area are enumerated as sub-locations with 

no population (fig. 1). These two sub-locations are 

protected forest areas. The major forest covered areas of 

the basin are found in these two sub-locations; as a 

consequence, forest cover is not included in our 

regression analysis. In addition, the water-body was not 

included in the analysis.  

 

2.3. Methods 

 
The study employed a global OLS model and a 

GWR model to estimate population using land 

use/cover information and to investigate the 

relationship between land use/cover and population. 

The global OLS regression model assumes that a 

stationary relationship between population and land 

use/cover exists. In spatial processes however, the 

relationship measurements vary over space, which 

implies spatial non-stationarity. To address the spatial 

non-stationarity issue, a GWR model is applied to 

extend the global OLS model.  

 
2.3.1. Global ordinary least square (OLS) 

regression model  

 

The census population map at sub-location 

level was overlaid on the land use/cover map in a 

geographical information system (GIS) following the 

approach by Yuan et al [12]. An overlay operation with 

the population map as the destination layer was 

attached to the land use/cover map; the result was a 

new map and a data matrix that inherits the attributes 

from these two maps, which enable us to perform 

spatial and regression analysis. Let, the data matrix has 

m rows and n+1 columns, where m is the number of 

sub-locations and n is the number of land use/cover 

classes occurring in the sub-locations. The first column 

of the data matrix is the population count at sub-

location level. Then, a global OLS regression model to 

evaluate the relationship between population and land 

use /cover type can be written as: 

 

1.................................
1

0 iij

n

j
ji XY εββ ++= ∑

=  

 

Where Yi is the total population count in the i 

sub-location for i=1,2,…,m, m is the number of sub-

locations in the study area, β0 and βj are the coefficients 

to be estimated or βj is the average population density 

estimate for the jth land use/cover type,  Xij is the total 

area for the  jth  land use/cover type within ith sub-

location in hectare and n is the number of land 
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use/cover classes, and ɛi the random error in population 

estimate of case i.  

The random errors represent the variation in 

population unexplained by the land use/cover types, 

and it is assumed to be independently and identically 

normally distributed with zero mean and constant 

variance δ2. 

 

2.3.2. Geographically weighted regression 

model (GWR)  

 
Geographically weighted regression (GWR) is 

a simple but powerful method for exploring non-

stationary spatial relationships. In GWR, all coefficients 

vary over space, and the parameter estimates are made 

using an approach in which the contribution of a 

sample to the analysis is weighted based on its spatial 

proximity to the specific location under consideration. 

Data from observations close to the location under 

consideration are weighted more than data from 

observations far away.  

GWR is a technique that expands standard 

regression for use with spatial data, and consequently, 

parameter estimates are more local rather than global 

parameters.  

The theoretical backgrounds and techniques 

for GWR model have been intensively discussed 

[9,13,14,30,31]. Suppose we have a standard set of 

observations Xij for i=1,2,…,n cases and j=1,2,…,k 

explanatory variables, and a set of dependent variables 

Yi for each case. This is a standard data set for a global 

regression model. Now suppose that in addition to this 

we have a set of location coordinates (ui , νi) for each 

case. The underlying standard model for GWR is given 

as: 

2.........),(),(
1

0 iijiij

k

j
iii XvuvuY εββ ++= ∑

=

  

 

Where β0 (u, v),…, βk (u, v) are k+1 continuous 

functions of the location (u, v) in the geographical study 

area, and εis are random error terms. In the basic 

GWR model we assume that the error terms are 

independently normally distributed with zero mean and 

common variance δ2 [9].  

Accordingly, for this study the GWR model 

extends the OLS model in Equation 1 by allowing the 

parameters to be estimated by a weighted least squares 

procedure. By using a weighting system dependent on 

the location in geographic space, it allows for local 

parameter estimates rather than global ones [8]. The 

GWR model for this study can be written as:  

3.................................
1

0 iij

n

j
ijii XY εββ ++= ∑

=  
Where Yi is the total population count in i sub-

location for i=1,2,…,m, βij is the value of the jth 

parameter estimates (coefficients) to be estimated at 

sub-location i or the average population density 

estimates for the jth land use/cover type  with respect to 

sub-location i, Xij is the total area for the jth land 

use/cover type within the ith  sub-location in hectare 

and n is the number of land use/cover classes and εi 

is the random error in the population estimate of case i . 

As a result, instead of being fixed in the global OLS 

model, the coefficients βj are now varying with respect 

to the sub-location i. A geographically weighted 

Guassian regression has been applied at a sub-location 

level. To specify the location of each sub-location i the 

latitude and longitude of its centroid are included in the 

model. The estimated  value of the parameter estimates 

(coefficients) are a function of the bandwidth of the 

spatial-kernel used, i.e. the radius or the number of 

observations around each point included in weighting 

matrix [32]. Two types of spatial kernels are typically 

used to limit the number of data points considered for 

each parameter estimates, the fixed spatial kernel and 

adaptive spatial kernel. In fixed-kernel the bandwidth 

at each regression point is constant across the study 

area while an adaptive spatial kernel permits the use of 

a variable bandwidth [9].  An adaptive kernel produces 

changing bandwidths that act to ensure that the same 

number of non-zero weights is used for each regression 

points in the analysis. This may be more reasonable in 

addressing spatial non-stationarity [11], [33].   

An adaptive spatial kernel was used in this 

study due to the fact that census sub-locations are 

varied considerably in terms area and population data. 

Selection of the weighting function and optimal 

bandwidth are accomplished by minimizing the 

corrected Akaike Information Criterion (AICc), which 

indicates how close a regression model approximates 

reality, accommodating for differences in the number of 

degree of freedom in the model compared [9], [34]. 

Thus, with this parameterization, the bandwidth is the 

same for all the covariates and the result is the best 

fitted model. Analysis was performed using the GWR 

(Version 3.0.18. 2003) software package and mapped 

using ArcGISTM.  

 

3. RESULTS  

 

3.1. Global OLS regression model of population 

- land use/cover  

 

The global OLS model was run with intercept 

(constant term) for proper comparisons of the results 

with the GWR model. In view of the fact that there will 

be no population if there is no land use/cover class 

suitable for persons to live, the global regression model 

was also fitted without constant (intercept) term. These 

two models were run using the census population of 62 

sub-locations of the study area. As the first attempt the 

five land use/cover class OLS regression model was 
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estimated with constant term (intercept), using 

Equation 1 in STATA® Data Analysis and Statistical 

Software. The following model was obtained:  

4.........................................).........(42.2

)(92.4)(80.1

)(17.1)(11.6976.6107

woodland

shrublandgrassland

croplandupbuiltYi

+−
++−+=

 

 

Table 1. Summary output for global OLS model regression with constant term (intercept). 

 
Dependent Variable Population Number of Observations 62 

Mean dependent variable             10,564.1     Number of Variables              6 
S.D. dependent variable               8,905.28     Degrees of Freedom             56 
R-squared                                 0.69   F-statistic (6, 56)             25.96 
Adjusted R-squared   0.67   
S.E. of regression     5,144.30   

Variable Coefficient Std. Error t-Statistic Probability [95% Conf. Interval] 
Constant   6107.766         1401.83           4.36    0.000  [3299.562    8915.971] 
Built-up area                 69.117      18.07       3.82    0.000  [32.91307    105.3213] 
Cropland                 1.175                  1.16            1.01  0.319   [-.1637676   3.771043] 
Grassland               1.803                   0.98            1.84    0.072  [-1.164582   3.515395] 
Shrub land                -4.923                    2.14        -2.30    0.025 [-9.217355 -0.628825] 
Woodland             2.426                      4.27          0.57    0.573 [-6.140195   10.99399] 

 

The regression result of the model reveals that 

the coefficient for built-up area and grassland cover are 

positively and significantly related to population at 1% 

(p<0.01) and 10% (p<0.1) respectively. Only the 

coefficient for shrub land has a negative value and is 

significant at 5% (p<0.05), suggesting that its impact on 

the population is not as great as built-up area and 

grassland cover. Built-up area has the highest positive 

coefficient, signifying its strong relationship with the 

population. In this model the coefficients for cropland 

and woodland use/cover are positive but insignificant. 

The model adjusted R2 value is 0.67 (table 1). Secondly, 

the five land use/cover class global OLS regression 

model was also estimated without constant term 

(intercept) and the following model was obtained: 

 

5.....................................).........(60.9

)(62.6)(37.2

)(11.2)(31.71

woodland

shrublandgrassland

croplandupbuiltYi

+−
++−=

 
Table 2. Summary output for global OLS model regression without constant term (intercept).

 

Dependent Variable Population Number of Observations 62 
Mean dependent variable             10,564.1     Number of Variables              5 
S.D. Dependent variable               8,905.28     Degrees of Freedom             57 
R-squared                                 0.82   F-statistic (5, 57)             53.90 
Adjusted R-squared  0.81   

S.E. of regression     6,020.07   
Variable Coefficient Std.Error t-Statistic Probability [95% Conf. Interval] 

Built-up area                 71.313                  20.62       3.76    0.000  [30.018  112.608] 
Cropland                 2.116                  1.09          1.94  0.058  [-0.070  3.771] 
Grassland       2.372                   0.95            2.49    0.016  [0.466    4.278] 
Shrub land                -6.622                    1.75        -3.77    0.000 [-10.136 -3.107] 
Woodland             9.601                      3.41          2.81    0.007 [2.765   16.437] 
Variable     Coefficient     Std.Error     t-Statistic Probability   [95% Conf. Interval] 

 

For the Equation 5 regression model, the 

result reveals that the coefficients for cropland, built-up 

area and grassland are positively and significantly 

related to population. Similar to the first model, the 

coefficient for shrub land cover is negative and 

significant. Built-up area and shrub land cover are 

highly significant at 1% (p<0.01). Grassland and 

woodland use/cover are significant at 5% (p< 0.05) and 

cropland use/cover is significant at 10% (p<0.1). The t 

value in this model indicates that the five land 

use/cover variables are significantly related to 

population as compared to the global model with 

constant term or intercept. And a significant 

improvement is shown in adjusted R2 value from 0.67 

to 0.81 (table 2). Compared to the global model with 

constant term, the explanatory variables (land 

use/cover types) significantly improved when the global 

model was estimated without a constant term. 

 

3.2. Geographically weighted regression (GWR) 

model of population - land use/cover  

 
The GWR model output allows to map the 

distribution of parameter estimates (coefficients) of the 

explanatory variables and to test their significance of 

spatial variability [9].  
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A GWR model was employed to estimate the 

coefficients in Equation 3 and to explore the spatial 

relationships between population and land use/cover in 

the Lake Naivasha basin. In addition, comparison was 

made to test whether the local model had a significant 

improvement over the global model (table 3).  

 
 

 
Table 3. Output summary of the local GWR model. 

 

 Global OLS Model Local GWR Model 
Residual sum of squares     1506843448.95 1221136653.90 
Effective number of parameters            6.00  9.60 
Sigma                 5187.28 4827.44 
Akaike Information Criterion                          1246.40 1243.31 
Coefficient of Determination                0.69 0.76 
Adjusted r-square                       0.64 0.71 
                     ANOVA           
Source     OLS Residuals GWR Improvement GWR Residuals   
SS                  1506843449.0 285706784.0    1221136653.9    
DF 6.00 3.60 52.40 
MS  79359739.7891 23304200.3003         
F 3.405     
Tests of Spatial variability of Parameters  
Parameter    P-value   
Intercept  0.72000   n/s   
Built-up Area         0.32000   n/s   
Cropland  0.05000*    
Grassland  0.04000*    
Shrub land 0.11000   n/s   
Woodland     0.21000   n/s * = significant at 5% level 

 
GWR models, an F-test is used to assess 

whether spatial variation exists in the relationship 

under study [32], specifically testing whether the GWR 

model offers an improvement over, and describes the 

relationship significantly better than the global OLS 

model. This was addressed through analysis of variance 

(ANOVA) test. The F-value is 3.40 suggesting that the 

GWR model has a significant improvement over the 

global model in determining the relationship between 

population and land use/cover.  

The corrected Akaike Information Criterion 

(AICc) of the local GWR model (1243.62) is less than 

the one of the global OLS model (1246.4) indicating that 

GWR model performs better than the global OLS model 

and provides a better fit for observed data (table 3). 

This is also confirmed by the improvement in adjusted 

R2 values. 

The significance of spatial variability for each 

independent variable in local parameter estimates 

(coefficients) is tested using a Monte Carlo significance 

test [9]. The result indicates that grassland cover and 

cropland use/cover are significant at 5% while the other 

three land use/cover classes are not significant (table 

3). In terms of the goodness-of-fit, the GWR model R2 

varies spatially over the entire study area from 0.43 to 

0.87. R2 values and its distribution indicated that 

around 83% the local estimates is greater than 0.70 as 

illustrated in Figure 3. Only 17% of the local model has a 

R2 value less than 0.69. The population-land use/cover 

model used with global OLS techniques to produce 

coefficients that are applied to the whole study area (i.e. 

for all sub-locations) to estimate population.  

 

Fig. 3. Local GWR model R2 values. 

 

However, the population-land use/cover 

model with a GWR technique can deal with spatial 

varying relationships and the model produces 

coefficients for each sub-location in the study area to 

estimate population. A sample result on estimated 
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population, errors and relative errors for 31 sub-

locations for the global OLS model and for the GWR 

model are presented in Table 4. The accuracy of 

estimated population based on these two models was 

evaluated, and it was found that the GWR model 

produced a more accurate population estimates with a 

lower root mean square error (RMSE) of ±4827.44 

compared to the global OLS model ±5187.28 (table 3).  

The GWR analysis in this study was based on a 

relatively small sample size due to the basin covers a 

limited number of sub-locations, however, as 

recommended by Pez, A. et al. concerning a smaller 

sample size [35], caution has been taken in the analysis 

to minimize the spurious c0rrelation of the coefficients. 

 

4. DISCUSSION 

 
The two global OLS models indicated that a 

significant relationship exists between land use/cover 

types and population in this region assuming stationary 

relationships. However, the stationary relationship may 

not be representative for local situations because the 

land use/cover map extracted from satellite image 

cannot be 100% accurate and there is spatial variability 

of classification errors. In addition, population data at 

the census tract (sub-location) level is also subject to 

spatial non-stationarity due to the modifiable aerial unit 

problem (MAUP), which will affect population density 

in each census tract [8].  

Thus, the population-land use/cover model 

should be spatially non-stationary, which OLS model 

cannot address. This can easily be explained by the fact 

that the global model essentially ignores any potential 

variations in space. Similar to the findings in Langford  

and Lo that examined the benefits of local model rather 

than a global regression model in population 

estimations and for spatial non-stationarity relationship 

between population and land use/cover [7] [8], this 

study also justifies the employment of GWR model in 

rural Africa to have a better estimate of population and 

to handle the spatial non-stationarity which is not 

addressed by the global OLS model. 

 

Table 4.  Estimated population, errors, and relative errors for selected 31 sub-locations. 
 

GWR Model (local model) Global OLS Model List of 
Sub-Locations 

Census 
population2 

Estimated 
population Error RE% Estimated 

population Error RE% 

MIKARO 3,292 5,100.43 -1,808.43 -0.549 6,897.64 -3,605.64 -0.523  
MATINDRI 3,458 6,586.70 -3,128.70 -0.905 5,921.55 -2,463.55 -0.416 
RORONI 3,893 4,909.08 -1,016.08 -0.261 5,409.18 -1,516.18 -0.280 
KIAMBOGO 4,558 5,785.66 -1,227.66 -0.269 1,874.93 2,683.07 1.431 
MAKUMBI 4,679 5,507.86 -828.86 -0.177 2,542.22 2,136.78 0.841 
MIKEU 4,807 5,419.70 -612.70 -0.127 2,575.47 2,231.53 0.866 
LERESHWA 4,850 6,375.36 -1,525.36 -0.315 3,169.93 1,680.07 0.530 
GATAMAIYU 4,914 6,499.09 -1,585.09 -0.323 8,265.37 -3,351.37 -0.405 
MALEWA 5,842 7,531.17 -1,689.17 -0.289 9,011.82 -3,169.82 -0.352 
GATONDO 6,134 8,406.65 -2,272.65 -0.371 10,342.80 -4,208.80 -0.407 
MURUAKI 6,174 8,944.72 -2,770.72 -0.449 5,700.51 473.49 0.083 
GETA 6,215 4,809.82 1,405.18 0.226 2,845.41 3,369.59 1.184 
KOINANGE 6,323 7,089.60 -766.60 -0.121 4,512.17 1,810.83 0.401  
MUNUNGA 6,557 8,448.48 -1,891.48 -0.288 5,964.15 592.85 0.099 
KANDUTURA 6,692 10,396.39 -3,704.39 -0.554 12,306.12 -5,614.12 -0.456 
KIRIKO 7,481 5,930.53 1,550.47 0.207 5,412.95 2,068.05 0.382 
NDEMI 8,176 6,843.21 1,332.79 0.163 13,338.02 -5,162.02 -0.387 
KARATI 8,302 10,124.57 -1,822.57 -0.220 6,352.38 1,949.62 0.307 
KINJA 8,514 8,253.92 260.08 0.031 5,971.02 2,542.98 0.426 
TARAMBETE 8,699 5,364.16 3,334.84 0.383 8,908.91 -209.91 -0.024  
MUKUNGI 8,919 9,666.01 -747.01 -0.084 7,155.66 1,763.34 0.246 
KINAMBA 9,135 6,646.10 2,488.90 0.272 2,524.40 6,610.60 2.619 
MUNYEKI 11,093 12,966.51 -1,873.51 -0.169 12,865.08 -1,772.08 -0.138 
MHARATI 12,299 10,604.96 1,694.04 0.138 10,336.42 1,962.58 0.190 
NAANDARASI 12,341 8,355.10 3,985.90 0.323 6,849.57 5,491.43 0.802 
GITHIORO 12,556 14,838.32 -2,282.32 -0.182 15,972.87 -3,416.87 -0.214 
WANJOHI 13,846 10,564.12 3,281.88 0.237 10,691.12 3,154.88 0.295 
MWANGO 14,418 12,805.61 1,612.39 0.112 10,808.29 3,609.71 0.334 
MURUNGARU 14,709 13,689.76 1,019.24 0.069 14,820.32 -111.32 -0.008 
LAKEVIEW 20,082 10,138.92 9,943.08 0.495 2,174.96 17,907.04 8.233   
KAHURU 20,803 19,678.88 1,124.12 0.054 22,969.07 -2,166.07 -0.094 

 

                                                 
2 The census population is the population count reported at sub-location level in 2009 Kenya population and housing census.  
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The GWR model produces local parameter 

estimates (coefficients) for the independent variables by 

location. The spatial distribution of the coefficients 

reveals that the relationships between land use/cover 

variables and population vary not only in magnitude, 

but also in direction. These parameter estimates show 

the strength of the relationship of the explanatory 

variables (land use/cover types) to population by 

location. The local parameter estimates for built-up 

area was uniform and shows a positive relationship 

throughout the study area, with a high positive value 

(strong relationship) in the northern part and trending 

down to low positive values (weaker relationship) in the 

south-western part of the Lake Naivasha basin (fig. 4A). 

The result pointed to a strong positive relationship 

between population and built-up area in the northern 

parts of the basin, which is characterized by the 

existence of many small towns and new settlement 

areas.  

 
Fig. 4A. Local parameter estimates (coefficients) for 

Built-up area. 

 

The economy of the basin is anchored in the 

agricultural sector and experienced a significant 

population growth over the past 30 years [20,21]. 

Agricultural activity in the basin has expanded 

considerably in terms of both the smallholder farmers, 

which are mainly subsistence farms in the upper 

catchment with high value commercial horticulture 

around the Lake [15], [20]. The global OLS model result 

shows that population is positively related with 

cropland use/cover while the GWR model estimates 

indicate that such relationship did not hold in many 

spatial units of the study area. In the GWR model, there 

is a high spatial non-stationarity for cropland use/cover 

and the local parameter estimates change sign over 

space and highly significant at 5% level in spatial non-

stationarity test (table 3).  

In the northern middle part of the basin, a 

strong positive relationship between population and 

cropland use/cover has been found. This strong positive 

population-cropland use/cover relationship result is 

consistent with the study by Becht et al. that indicated 

the presence and a continuous expansion of smallholder 

farmers and agricultural farming practices in the upper 

catchment areas of the basin [15]. However, around the 

lake and in south-western parts of the basin, the 

population-cropland use/cover shows a negative 

relationship due to small-scale agricultural activities are 

very modest in these areas. Besides, large-scale 

agricultural farm practices are common around Lake 

Naivasha. Moreover, the area south of Lake Naivasha is 

semi-arid which might hinder the expansion of 

smallholder’s farms (fig. 4B).   

 
Fig. 4B. Local parameter estimates (coefficients) for 

Cropland use/cover. 

 
Worldwide, grassland cover is found most 

commonly in semi-arid zones (28% of the world’s 

grasslands), followed by humid (23%), cold (20%), and 

arid-zone (19%).  Human population is the highest in 

the dry grassland (arid, semi-arid, and dry sub-humid) 
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areas of Sub-Saharan Africa followed by Asia [36]. 

Similarly, Lake Naivasha is located in semi-arid zone. 

Although there is a very rapid rise in large-scale 

horticultural farms around the lake, these areas are still 

largely occupied by traditionally pastoral land; the 

pastoral communities still depend on the lake for 

watering and grazing their cattle [15], [37]. The major 

grassland cover is found in the southern, south-western 

and south-eastern part of the basin with sparsely 

scattered shrub land cover. Accordingly, the spatial 

pattern indicates a trend of low values in the north and 

high values in the south. The local parameter estimates 

have positive values (i.e., strong relationship) in 

southern and south-eastern parts of the basin as 

illustrated in Figure 4C. The northern part of the basin 

shows negative values, indicating a weak relationship 

between population and grassland cover. The grassland 

cover is highly significant at 5% level in spatial non-

stationarity test.  

 
Fig. 4C. Local parameter estimates (coefficients) for 

Grassland cover. 

 
The population-cropland use/cover and 

population-grassland cover relationship suggested that 

the conclusion from the global model may be 

challenged because of a significant spatial non-

stationarity in determining the relationship between 

population and land use/cover. The result also indicates 

that considering the spatial variations in the local 

parameter estimates (coefficients) of the land use/cover 

variables substantially improved the population 

estimates (table 4). Therefore, this study indicates that 

the land use/cover data in rural Africa can provide vital 

information to estimate population and it can also be 

used to model the spatial pattern of population density 

using high resolution satellite imagery. 

 

5. CONCLUSION  

 

This study contributes to improving of 

population density estimations using remotely-sensed 

data on land use/cover for the Lake Naivasha basin in 

Kenya. Remote sensing information on land use/cover 

was obtained from ASTER satellite data through object-

oriented image classification. Two global OLS 

regression models and a GWR model were applied to 

explore the relationship between population and land 

use/cover. The global OLS models failed to deal with 

spatial non-stationarity. However, the GWR model 

substantially improved the population estimates by 

accounting for local variation through the potential 

spatial non-stationarity. Moreover, the population-land 

use/cover relationships are better described using a 

local model than a global model given the spatial 

variation of the regression coefficients. The grassland 

and cropland use/cover classes are highly significant 

and show spatially varying relationship with the 

population for the Lake Naivasha basin.  

This study indicates that applying a GWR 

model can significantly improve population estimations 

using remotely-sensed data. Although, the methodology 

and the model results seem to be very appealing, 

application of these methods needs to be combined with 

thorough understanding of other factors such as the 

presence of infrastructural facilities, employment 

opportunities, economic and political decisions. These 

factors can be independent of land use/cover to a large 

extent. The spatial patterns can also reveal useful 

information to investigate land use/cover changes, to 

examine the factors affecting population distribution, 

and to formulate appropriate management strategies to 

deal with a population estimate at different spatial 

scales. Therefore, further research may lead in the 

application of the method to highlight a potential spatial 

non-stationarity and the use of GWR as a tool to assist in 

model development to improve our understanding of 

spatially-varying relationships of other socioeconomic 

variables using remotely-sensed data.  
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