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1. INTRODUCTION 
 

We can consider economic growth in different 
forms and within different geographical distribution 
patterns. There is a huge and extensive literature on the 
theory of macro-aspects of regional economic growth, 
however the specific spatial economic linkage pattern of 
open regions having received less attention. Spatial 
dynamics and techno-economic evolution are often two 
parallel phenomena. Stoneman (1983, 1995) has made a 
useful distinction between the generation of new 
technology, the adoption of new technology, the 
diffusion pattern of new technology and the socio-
economic impact of these processes.  In later studies, 
much attention has been devoted to the main critical 
factors that are favourable to diffusion and innovation 
processes, such as, knowledge intensity, capital 
intensity, accessibility to the market and suppliers, 
organizational and logistic structures. 
 This paper attempts to analyse the diffusion of 
technology within diffusion process. In addition, it also 
examines the probit analysis and the substitution 
diffusion models. The first type of the models focuses 
on the temporal aspects, while the other concentrates 
on the phenomenon of the spatial aspects. 

 
2. MODELLING INNOVATION DIFFUSION IN A 
SPACE-TIME CONTEXT  
 

Many diffusion models, i.e. Davies (1979) and 
Stoneman (1987) are based on the approach of the 
theory of epidemics. Epidemic models can be used to 
explain how innovation spreads from one unit to others, 
at what speed and what can stop it. The epidemic 
approach starts from the assumption that a diffusion 
process is similar to the spread of a disease among a 
given population. From a time dimension, a common 
approach of diffusion approach is the epidemic model 
approach. The basic epidemic model is based on three 
assumptions:  

- the potential number of adopters may not be 
in each case the whole population under consideration;  

- the way in which information is spread may 
not be uniform and homogeneous;  

- the probability to optimize innovation once 
informed is not independent of economic considerations, 
such as profitability and market perspectives.  

The epidemic model is based on the idea that 
the spread of information about a new technology is the 
key towards explaining diffusion. Epidemic models 
hypothesize that some firms adopt later than others 
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because they do not have sufficient information about 
the new technology. According to this theory, initially, 
potential adopters have little or no information about 
the new technology and are therefore unable or 
disinclined to adopt it. However, as diffusion proceeds, 
non-adopters collect technical information from 
adopters via their day-to-day interactions with them, 
just as one may contract a disease by casual contact 
with an infected person. As a result, as the number of 
adopters grows, the dissemination of information 
accelerates, and the speed of diffusion increases. 
However, as the number of adopters exceeds the 
number of non-adopters, the speed of diffusion 
decreases. Importantly, the probability of a non-adopter 
becoming "infected" by contact with an adopter is not 
the same for every technology; it depends on 
characteristics of the technology such as profitability, 
risk, and the size of the investment required to be 
adopted. Figure 1 illustrates the logistic form of three 
different innovations which may vary in their relative 
rate of adoption. 

Fig. 1. Adoption curves. 
 

The spread of new technology among a fixed 
number of identical firms can be represented as follows: 
Let us assume that the level of diffusion is D which 
corresponds to mt number of firms in a fixed 
population of n which have adopted the new innovation 
at time t and to (n-mt) firms remaining as the potential 
adopters.  

Let us assume the probability of an adoption is 
a constant term b. Then Dmt, the expected number of 
new adopters between t and Dt, will be given by the 
product of this probability, (between one non-adopter 
and one adopter to lead to an adoption during the 
period of time Dt).  

The number of individuals contracting the 
disease between times t and t+1 is proportionate to the 
product of the number of uninfected individuals and the 
proportion of the population already infected, both at 
time t. The magnitude of b will depend on a number of 
factors, such as, the infectiousness of the disease and 
the frequency of social intercourse.  

This is rationalized by assuming that each 
uninfected individual has a constant and equal 

propensity to catch the disease, from the contact with 
an infected individual and that the number of such 
contacts will be determined by the proportion of the 
population who is already infected (assuming 
homogeneous mixing). At each instant t, every 
individual can meet randomly with another member of 
population and then the expected number of encounters 
(between adopters and non-adopters) during the time 
Dt, is:  [mt(n-mt)]Dt. 

It follows that Dmt is equal to: 
 

mt+1-mt=b[(n-mt)mt/n], (b>0) 
 
where, the parameter b is the speed of diffusion or the 
rate of diffusion.  

Fig. 2. The logistic epidemic curve. 

 
This is rationalized by assuming that each 

uninfected individual has a constant and equal 
propensity to catch the disease (as given by b) from the 
contact with an infected individual and the number of 
such contacts will be determined the proportion of the 
population who are already infected. If the period is 
very short, then the above equation can be rewritten, as: 
 

dmt/dt[1/(n-mt)]=bmt/n 
 

This differential equation has the following 
solution (logistic function): 
 

mt/n={1+exp(-a-bt)}-1 
 

New product variants enter into the market; 
products produced above average efficiency extend 
their market shares and below average products lose 
market shares and sometimes exit from the market. The 
epidemic model of technology diffusion is applied to 
depict this evolutionary process through which 
economic selection proceeds. The diffusion process is 
described by a complex equation, which is illustrated by 
the following simple logistic function (Gunnarsson Jan, 
Torsten Wallin, 2008), where a is a constant of 
integration.  

If one plots mt against the time (t), the profile 
will follow an S-shaped curve (sigmoid curve). This is 
the well known logistic time curve. As we can see, 
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Figure 2 predicts that the proportion of the population 
having contacted the disease will increase at an 
accelerating rate until 50%, when infection is attained 
at time t=-(a/b). Thereafter, infection increases at a 
decelerating rate and 100% infection is approached 
asymptotically. 

The upper limit of the curve will be (which 
itself has a maximum of 1, when t increases infinitely 
which follows from the assumption that all firms were 
potential adopters). The logistic curve has an infection 
point at mt=1/2, where the adoption process accelerates 
up to a point where the half of the population of firms 
have adopted and decelerates beyond. Empirical tests 
are straightforward using the linear transformation: 
 

log[mt/(n-mt)]=a+bt 
 

There is a huge literature on the law of logistic 
growth, which must be measured in appropriate units. 
Growth process is supposed to be represented by a 
function of the form of the above third equation with t 
to represent the time. Population theory relies on 
logistic extrapolations. The only trouble with this theory 
is that not only the logistic distribution but also the 
normal, the Cauchy, and other distributions can be 
fitted to the same material with the same or better 
goodness of fit. Examining the logistic curve, we can 
summarize the following disadvantages:  

- the infectiousness of the disease must remain 
constant over time for all individuals; that means, b 
must be constant, however, in the increasing resistance 
on the part of uninfected or a reduction in the 
contagiousness of the disease suppose that b falls over 
the time;  

- all individuals must have an n equal change 
of catching-up the disease.  

That means, b is the same for all groups within 
the population. Moreover, there are a number of other 
assumptions which may prove unrealistic for the 
logistic solution, (for instance, constant population is 
required). 
 
3. MODELLING GROWTH AND DIFFUSION 
PROCESSES: THE APPROACH OF PROBIT 
MODELS 
 

Spatial growth processes may assume a variety 
of different forms. We will commence the analysis of 
spatial dynamics in the context of diffusion models of 
probit analysis. 

The probit analysis has already been a well-
established technique in the study of diffusion of new 
products between individuals. This approach 
concentrates on the characteristics of individuals in a 
sector and is suitable not only to generate a diffusion 
curve, but also gives some indications of which firms 
will be early adopters and which late.  

Given the difficulties which are associated with 
the linear probability model, it is natural to transform 
the original model in such a way that predictions will lie 
between (0, 1) interval for all X. These requirements 
suggest the use of a cumulative probability function (F) 
in order to be able to explain a dichotomous dependent 
variable, (the range of the cumulative probability 
function is the (0, 1) interval, since all probabilities lie 
between 0 and 1. The resulting probability distribution 
may be represented as:  

 
Pi=F(a+bXi)=F(Zi) 

 
Under the assumption that we transform the 

model using a cumulative distribution function (CDF), 
we can get the constrained version of the linear 
probability model: 
 

Pi=a+bXi 
 

There are numerous alternative cumulative 
probability functions, but we will consider only two, the 
normal and the logistic ones. The probit probability 
model is associated with the cumulative normal 
probability function. To understand this model, we can 
assume that there exists a theoretical continuous index 
Zi which is determined as an explanatory variable X. 
Thus, we can write:  
 

Zi=a+bXi 
 

The probit model assumes that there is a 
probability Z*i that is less or equal to Zi, which can be 
computed with the aid of the cumulative normal 
probability function. The standardized cumulative 
normal function is written by the expression of the 
above last equation, that is, a random variable which is 
normally distributed with mean zero and a unit 
variance. By construction, the variable Pi will lie in the 
(0, 1) interval, where Pi represents the probability that 
an event occurs. Since this probability is measured by 
the area under the standard normal curve, the more 
likely the event is to occur, the larger the value of the 
index Zi will be. In order to be able to obtain an 
estimate of the index Zi, we should apply in the above 
equation the inverse of the cumulative normal function 
of:  

Zi=F-1(Pi)=a+bXi 
 

In the language of probit analysis, the 
unobservable index Zi is simply known as normal 
equivalent deviate (n.e.d.) or simply as normit. 

The central assumption underlying the probit 
model is that an individual consumer (or a 
firm/country) will be found to own the new product (or 
to adopt new innovation) at a particular time when the 
income (or the size) exceeds some critical level. 
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Let us assume that the potential adopters of 
technology differ according to some specified 
characteristic, z, that is distributed across the 
population as f(z) with a cumulative distribution F(z), 
as the Figure 3 illustrates. The advantage of the probit 
diffusion models is that it relates the possibility of 
introducing behavioral assumptions concerning the 
individual firms (firms). The probit model also offers 
interesting insights into the slowness of technological 
diffusion process. 

Fig. 3. The cumulative  distribution. 

 
Let us consider that we have two set of 

innovations, the first group concerns the innovation A 
which follow a cumulative lognormal diffusion curve 
(this can be considered as the simple and the relative 
cheap innovation), while the second group concerns the 
innovation B which follow a cumulative normal 
diffusion curve (this can be considered as the more 
complex and expensive innovation): 
 

Pt=N(logt/mD,s2D) 
 

Pt=N(t/mD,s2D) 
 

For estimation purposes, both the above 
equations can be linearized by the following 
transformation: 
 

Pt=N(Zt/0,1), 
 

where: Zt may be defined as the normal 
equivalent deviate or normit of Pt, where given values 
for Pt, Zt can be read off from the standard normal 
Tables.  

Re-arranging the equations the last two 
equations in terms of the standard normal function, it 
follows that:  
 

Zt=(logt-mD)/sD) 
 

Zt=(t-mD)/sD) 
 

For empirical purposes, it must be 
remembered that Pt refers to a probability that a 
randomly selected firm has adopted the innovation at 

time t. This can only be measured by the proportion of 
firms having adopted mt/n.  

However, to employ the variable Zt as 
dependent variable in the regression equation, we will 
violate one of the assumptions of the standard linear 
regression model, which is the dependent variable and 
thus the disturbance term is not homoskedastic. 

In fact, this problem is always encountered 
when is used the probit analysis. In the past, two 
alternative estimators have been advocated under these 
circumstances: the first concern the maximum 
likelihood and the second concerns the minimum 
normit x2 method. In this context, the minimum normit 
X2 method amounts the following weighted 
regressions: 
 

Zt=a1+b1logt (for group A which 
corresponding to cumulative lognormal), 
 

Zt=a2+b2t (for group B which corresponding 
to cumulative normal), 
 

where: Zi refers to the normal equivalent 
deviate of the level of diffusion (mt/n) in year t where 
diffusion is defined by the proportion of firms in the 
relevant industry who have adopted. 
 
4. CONCLUSIONS 
 

Diffusion is the spread of a technology through 
an economy or industry. The diffusion of a technology 
generally follows an S-shaped curve, with early version 
of technology being rather unsuccessful, followed by a 
period of successful innovation with high levels of 
adoption, and finally a dropping off in adoption as a 
technology reaches its maximum potential in a market. 
Innovation and diffusion are virtually synonymous with 
long-run economic growth.  

Diffusion is the process by which innovations 
(by the new products or new processes) are spread 
within and across economies. Many studies explain the 
diffusion patterns by focusing mainly on the way that 
information spreads the influence of expected 
profitability and the size of firms.  

Diffusion is the core of the process of 
modernisation. Innovation and diffusion in a long-run 
way and should be expected to explain medium-run 
variations in the growth of GDP and productivity. Both 
the epidemic approach and the probit approach are 
defined in positioning the place of firms relative to 
others. The diffusion path can be interpreted by two 
theoretical forms:  

- the cumulative lognormal curve and;  
- the cumulative normal curve.  
The exact forms of these curves can be varying 

according to the diffusion technologies and the 
diffusion period.   
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